High-Valent Manganese Corroles and the First Perhalogenated Metallocorrole Catalyst**

Galina Golubkov, Jesper Bendix, Harry B. Gray,* Atif Mahammed, Israel Goldberg,* Angel J. DiBilio, and Zeev Gross*

Two major goals of research on the manganese(III) porphyrin catalyzed oxygenation of hydrocarbons are improved activity/lifetime profiles and the identification of reaction intermediates.^[1] Increasingly more active catalysts have been obtained by replacing tetraphenylporphyrin with halo-phenyl analogues, and then with derivatives in which the β -pyrrole carbons are halogenated as well.^[2] Interestingly, this effect is more pronounced for manganese than for iron porphyrins.[1a, 2b] Spectroscopic identification—particularly by NMR of proposed manganese(v) intermediates should be relatively straightforward, since d^2 metalloporphyrins with strong π donor ligands are expected to be diamagnetic. The first ¹H NMR spectroscopic characterization of a (nitrido)manganese(v) complex indeed dates from 1983,[3] but the spectrum of an (oxo)manganese(v) porphyrin was obtained only very recently.^[4] Manganese(IV) porphyrins are more stable: X-ray structures have been reported for several [Mn(por)(OR)₂] complexes (e.g., $R = CH_3$, C_6H_5I , por = porphyrin);^[5] but so far the characterization of high-valent manganese porphyrins with oxo or halo ligands is limited to spectroscopic methods.^[6]

Corroles are known to be superior to porphyrins in stabilizing high oxidation states of various transition metals, [7] but until recently only trivalent complexes were reported for manganese. [8, 9] Furthermore, the oxidation state assignment of the *formally* manganese(III) and manganese(IV) complexes of octaalkylcorroles remained ambiguous because of some indications that the corrole is oxidized. [8, 9] In addition, octaalkylcorrole metal complexes have never been examined in oxidation catalysis, probably because *meso* aryl substitution is almost always required in the related porphyrin-based catalysts. However, this situation is changing dramatically as a

result of the introduction of the electron-poor 5,10,15tris(pentafluorophenyl)corrole (H₃(tpfc),^[10] tpfc = the trianion). The iron, manganese, and rhodium complexes of H₃(tpfc) have been shown to be potent catalysts for the oxygen and carbene transfer to olefins and alkanes,[11] with a readily observed (oxo)manganese(v) intermediate in epoxidation catalyzed by [Mn(tpfc)] (1).[11b] In addition, the Fe^{IV}(Cl), Rh^{III}(PPh₃), Cr^V(O), and Mn^{III}(OPPh₃) complexes have been fully characterized by a combination of spectroscopic methods and X-ray crystallography.^[12] In all these complexes there were no indications for oxidation of the corrole, as opposed to the ambiguity in the case of the iron and manganese octaalkylcorroles.[8, 9, 13] We now show that 1 can be functionalized at both the metal and the corrole centers, which leads to the isolation and full characterization of two manganese(IV) corroles, a stable (nitrido)manganese(V) corrole, and a perhalogenated manganese(III) corrole (Scheme 1). Preliminary results for the perhalogenated manganese(III) corrole demonstrate its superior activity as an oxidation catalyst.

Scheme 1. a) NaN_3 , $h\nu$, b) $1/2X_2$ (X = Cl, Br), c) excess $Br_2/MeOH$.

Cyclic voltammetry of **1** reveals a redox potential of 0.71 V (vs. standard calomel electrode (SCE)), suggesting that mild oxidants could be used for the isolation of novel high-valent manganese corroles. Indeed, treating a green hexane solution of the highly soluble **1** with bromine or tris(4-bromophenyl)-aminium hexachloroantimonate results in the immediate and quantitative precipitation of [Mn(tpfc)(Br)] (**2**) and [Mn(tpfc)Cl] (**3**), respectively.^[14, 15] The electronic spectra of these complexes (each exhibits a single Soret band) are very similar to those of manganese(IV) porphyrins,^[4-6] suggesting that the oxidations are metal rather than corrole centered. Reduction of **2** (Figure 1) produces a UV/Vis spectrum that is identical to that obtained by adding *n*-Bu₄N⁺Br⁻ to **1**, corresponding to the metal-centered couple [Mn^{IV}–Br]/

[*] Prof. Dr. Z. Gross, G. Golubkov, Dr. A. Mahammed

Department of Chemistry and Institute of Catalysis Science and Technology

Technion—Israel Institute of Technology

Haifa 32000 (Israel) Fax: (+972) 4-8233735

E-mail: chr10zg@tx.technion.ac.il

Prof. Dr. H. B. Gray, Dr. J. Bendix, Dr. A. J. DiBilio

Beckman Institute

California Institute of Technology

Pasadena, CA 91125 (USA)

Fax: (+1) 626 449 4159

E-mail: hgmc@its.caltech.edu

Prof. Dr. I. Goldberg

School of Chemistry

Tel Aviv University

Tel Aviv 69978 (Israel)

Fax: (+972) 3-6409293

E-mail: goldberg@chemsg7.tau.ac.il

[**] This research (No. 368/00) was supported by the Israel Science Foundation (Z.G.), the US National Science Foundation (H.B.G.), and the Fund for the Promotion of Research at the Technion (Z.G.).

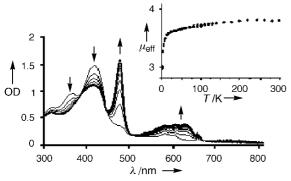


Figure 1. Spectroelectrochemical reduction of $\bf 2$ at 0.4 V and a plot of the magnetic moment versus T for $\bf 2$.

[Mn^{III}—Br]⁻. Also consistent with the reduction of the metal center is the large dependence of the reduction potential on axial ligation; $E_{1/2}=0.69$ and 0.41 V for **2** and **3**, respectively. This proposal was further supported by magnetic susceptibility measurements (SQUID, Figure 1, inset) on **2** and its EPR spectra (not shown, frozen CH₂Cl₂ at 130 K; solid at room temperature). The magnetic moment of 3.80 $\mu_{\rm B}$ and the EPR data (broad g=4.3 signal and a g=1.99 signal with resolved Mn hyperfine structure, $a_{\rm Mn}=85$ G) confirm an isolated S=3/2 system, in line with the electronic structure of other manganese(IV) complexes.^[16] The alternative formulation of **2** and **3** as manganese(III) corrole radical complexes is expected to result in much more complex magnetic data and EPR spectra. ^[66]

X-ray crystallographic analysis of **2** and **3** (Figure 2) reveals a pronounced doming of the corrole framework in both structures, with all four pyrrole nitrogens lying significantly

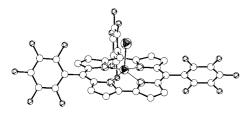


Figure 2. ORTEP views of [Mn(tpfc)(Br)] (2; top) and [Mn(tpfc)(Cl)] (3; bottom).

above the 19-membered carbon ring (average out of plane distance of 0.065 Å in **2** and 0.21 Å in **3**). As expected, the manganese(IV) – halide bond lengths of 2.428 and 2.312 Å in **2** and **3**, respectively, are shorter (by approximately 0.05 Å) than those found in analogous manganese(III) porphyrin complexes.^[17, 18] The average Mn–N bond lengths in **2** (1.925 Å) and **3** (1.932 Å) are longer than those in [Mn^{III}(tpf-c)(OPPh₃)] (1.916 Å),^[12c] but this is because of very large differences in the out of plane displacements of the manga-

nese atom. Corresponding deviations from the N4 and corrole planes are 0.42 and 0.47 Å in **2**, 0.43 and 0.58 Å in **3**, but only 0.29 and 0.29 Å in [Mn^{III}(tpfc)(OPPh₃)]. [12c] Interestingly, the Mn–Cl and Mn–N bond lengths in **3** and [Mn(oec)(Cl)] are very similar, [9] despite the large structural and electronic differences between the corroles.

In the course of these studies, we noted two other unique features of **1**, both of which could be exploited for preparation of novel manganese corroles. First, the aforementioned high affinity of **1** for Br⁻ was also applied to N₃⁻, which led to a one-pot version of the known protocol for preparation of (nitrido)metal complexes:^[19] irradiation of a mixture of **1** and NaN₃ in CH₃CN resulted in very clean conversion into [Mn^V(tpfc)(N)]-Na⁺ (**4**). This complex, which is stable at room temperature in solution or as a solid, was identified by a combination of spectroscopic methods (Figure 3). Both the sodium ion and the nitrido ligand are apparent in the mass spectrum (MS); sharp resonance signals in the NMR spectrum are consistent with a diamagnetic manganese(v) center; and the UV spectrum of **4** is very similar to that of analogous neutral (nitrido)manganese(v) porphyrins.^[3]

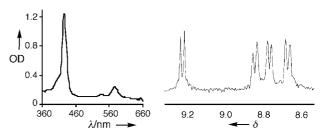


Figure 3. ¹H NMR and UV/Vis spectra of **4** in CD₃CN at room temperature.

Second, we noticed remarkably facile pyrrole-substitution during the aforementioned metal-based oxidation of 1. In fact, the first two crystal structures of 2 and 3 were obtained with partially halogenated (Br, Cl) corroles. This phenomenon was exploited by treating 1 with an excess of Br₂ in MeOH, which allowed isolation of the fully brominated complex, [20] [Mn(Br₈tpfc)] (5), in high yield. In contrast, the preparation of analogous porphyrins requires four synthetic steps: metallation of the porphyrin by zinc, bromination of the zinc complex with NBS (1-bromo 2,5-pyrrolidinedione), not Br₂ as with the corrole, removal of the zinc, and metallation by manganese.^[2] The transformation of 1 to 5 causes a 0.37 V shift of the Mn^{III}/Mn^{IV} couple in the cyclic voltammogram (Figure 4), which is the reason that 5 is isolated in the manganese(III) oxidation state, despite the fact that the first equivalent of bromine oxidizes 1 to 2. To assess differences in reactivity between the "second and third generation" manganese(III) corroles,[2a] 1 and 5 were compared as catalysts for oxygenation of three representative substrates (Scheme 2). Both complexes catalyze the oxidation of styrene by iodosylbenzene in very high yield, but with a very large difference in reaction time: 10 h with 1 compared to 15 min with 5. These differences were amplified with the less reactive substrates: yields of 100% versus 40% for trans-stilbene and 100% versus only 11% for cyclohexene catalyzed by 5 (15 min) and

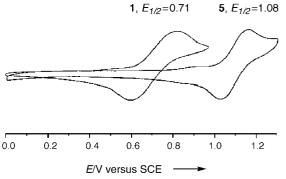
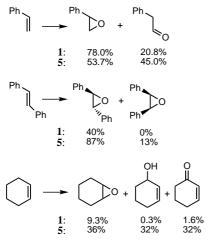



Figure 4. Cyclic voltammetry of [Mn(tpfc)] (1) and [Mn(Br $_8$ tpfc)] (5), in CH $_2$ Cl $_2$ with 0.1M TBAP.

Scheme 2. **1** and **5** as oxygenation catalysts, reaction conditions: substrate (1.2 mmol), iodosylbenzene (0.12 mmol), catalyst (1.2 μ mol), benzene (1 mL) at room temperature under Ar, for 15 min with **5** and 10 – 12 h with **1**.

1 (12 h), respectively. Most significantly, 5 was not bleached at the end of all reactions, while this is only true for 1 in the reaction with styrene.

In conclusion, we have demonstrated that functionalization of the manganese(III) complex of $H_3(tpfc)$ provides a facile route to various high-valent manganese corroles and to the first perhalogenated corrole-based catalyst, all in very simple one-pot syntheses. The very large increase in catalytic activity upon β -pyrrole bromination of 1 to 5 will be fully investigated.

Received: January 17, 2001 [Z16442]

- a) B. Meunier in Metalloporphyrins Catalyzed Oxidations (Eds.: F. Montanari, L. Casella), Kluwer, Dordrecht, 1994, pp. 1–48; b) J. T. Groves in Cytochrome P450: Structure, Mechanism, and Biochemistry (Ed.: P. R. Ortiz de Montellano), 2nd ed., Plenum, New York, 1995, chap. 1.
- [2] a) D. Mansuy, Coord. Chem. Rev. 1993, 125, 129; b) Z. Gross, L. Simkhovich, Tetrahedron Lett. 1998, 39, 8171.
- [3] J. T. Groves, T. Takahashi, J. Am. Chem. Soc. 1983, 105, 2073.
- [4] N. Jin, J. T. Groves, J. Am. Chem. Soc. 1999, 121, 2923.
- [5] H. Volz, W. Muller, Chem. Ber. 1997, 130, 1099, and references therein.
- [6] a) Y. Watanabe, H. Fujii, Struct. Bonding 2000, 97, 61; b) L. Kaustov,
 M. E. Tal, A. I. Shames, Z. Gross, Inorg. Chem. 1997, 36, 3503.
- [7] a) S. Will, J. Lex, E. Vogel, H. Schmickler, J. P. Gisselbrecht, C. Haubtmann, M. Bernard, M. Gross, Angew. Chem. 1997, 109, 367;
 Angew. Chem. Int. Ed. Engl. 1997, 36, 357, and refs therein;
 b) Tetrahedron Organic Chemistry Series, Vol. 15: Expanded, Con-

- tracted & Isomeric Porphyrins (Eds.: J. L. Sessler, S. J. Weghorn), Pergamon, UK, 1997, chap. 1.
- [8] a) S. Licoccia, E. Morgante, R. Paolesse, F. Polizio, M. O. Senge, E. Tondello, T. Boschi, *Inorg. Chem.* 1997, 36, 1564; b) R. Paolesse, L. Jaquinod, M. O. Senge, K. M. Smith, J. Org. Chem. 1997, 62, 6193; c) K. M. Kadish, V. A. Adamian, E. Van Caemelbecke, E. Gueletii, S. Will, C. Erben, E. Vogel, J. Am. Chem. Soc. 1998, 120, 11986.
- [9] For data on manganese(IV) complexes of 2,3,7,8,12,13,17,18-octaethyl-corrole (H₃(oec)) see: C. Erben, S. Will, K. M. Kadish in *The Porphyrin Handbook, Vol. 2* (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2000, chap. 12.
- [10] a) Z. Gross, N. Galili, I. Saltsman, Angew. Chem. 1999, 111, 1530;
 Angew. Chem. Int. Ed. 1999, 38, 1427; b) Z. Gross, N. Galili, L. Simkhovich, I. Saltsman, M. Botoshansky, D. Bläser, R. Boese, I. Goldberg, Org. Lett. 1999, 1, 599.
- [11] a) Z. Gross, L. Simkhovich, N. Galili, Chem. Commun. 1999, 599. b) Z. Gross, G. Golubkov, L. Simkhovich, Angew. Chem. Int. Ed. 2000, 39, 4045; c) L. Simkhovich, A. Mahammed, I. Goldberg, Z. Gross, Chem. Eur. J. 2001, 7, 1041.
- [12] a) L. Simkhovich, N. Galili, I. Saltsman, I. Goldberg, Z. Gross, *Inorg. Chem.* 2000, 39, 2704; b) A. E. Meier-Callahan, H. B. Gray, Z. Gross, *Inorg. Chem.* 2000, 39, 3604; c) J. Bendix, H. B. Gray, G. Golubkov, Z. Gross, *Chem. Commun.* 2000, 1957.
- [13] S. Cai, F. A. Walker, S. Licoccia, Inorg. Chem. 2000, 39, 3466
- [14] 2: A hexane solution of 1 (10 mg, 11.8 µmol) was treated with a hexane solution of Br₂ (5.9 µmol), which resulted in quantitative precipitation of **2** as a red-brown solid. MS⁻: e/z (%): 927 (40) [M^-], 848 (100) $[M^{-}-{\rm Br}]$, UV/Vis (CH₂Cl₂) $\lambda_{\rm max}$ [nm] (lg ε) 368 (4.63), 416 (4.72), 582 (3.74); elemental analysis (%) calcd for C₃₇H₈BrF₁₅MnN₄·2H₂O: C 46.08, H 1.25, N 5.81; found: C 45.76, H 1.38, N 6.20. Recrystallization from benzene/heptane resulted in X-ray quality crystals. [Mn(tpfc)(Br)], crystallized benzene as hemi-solvate $(C_{37}H_8BrF_{15}MnN_4)\cdot \frac{1}{2}(C_6H_6)$: formula weight 967.38, monoclinic, space group $P2_1/c$, a = 13.425(1), b = 23.629(1), c = 11.208(1) Å, $\beta =$ 98.38(1)°, $V = 3517.5(2) \text{ Å}^3$, Z = 4, T = 110 K, $\rho_{\text{calcd}} = 1.827 \text{ g cm}^{-3}$, $\mu(Mo_{K\alpha}) = 1.63 \text{ mm}^{-1}$, 6636 unique reflections, R1 = 0.053 for 4854 observations with $F_o > 4\sigma(F_o)$, R1 = 0.082 (wR2 = 0.148) for all unique data, $|\Delta \rho| = 1.31 \text{ e Å}^{-3}$.
- [15] 3: A hexane solution of 1 (2.5 mg, 3 µmol) was treated with a dichloromethane solution of tris(4-bromophenyl)aminium hexachloroantimonate (2.5 mg, 3 µmol), which resulted in quantitative precipitation of 3 as a red-brown solid. MS-: e/z (%): 883 (25) [M-], 848 (100) $[M^- - Cl]$; UV/Vis $(CH_2Cl_2) \lambda_{max}$ [nm] 362, 414 (Soret), 582 (Q band). Recrystallization from benzene/heptane resulted in X-ray quality crystals. [Mn(tpfc)(Cl)], crystallized as dibenzene solvate (C₃₇H₈ClF₁₅MnN₄)·2(C₆H₆): formula weight 1040.08, triclinic, space group $P\bar{1}$, a = 8.547(1), b = 13.488(1), c = 19.675(1) Å, $\alpha = 71.08(1)$, $\beta = 85.59(1), \gamma = 73.88(1)^{\circ}, V = 2061.1(2) \text{ Å}^3, Z = 2, T = 110 \text{ K}, \rho_{\text{calcd}} =$ $1.676 \,\mathrm{g\,cm^{-3}}, \; \mu(\mathrm{Mo_{K\alpha}}) = 0.50 \;\mathrm{mm^{-1}}, \; 7056 \;\; \text{unique reflections}, \; R1 =$ 0.062 for 4274 observations with $F_o > 4\sigma(F_o)$, R1 = 0.128 (wR2 = 0.147) for all unique data, $|\Delta \rho| = 0.55 \text{ e Å}^{-3}$. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-147467 (2) and CCDC-147468 (3). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
- [16] M. J. Camenzind, F. J. Hollander, C. L. Hill, *Inorg. Chem.* 1983, 22, 3776.
- [17] A. Tulinsky, B. M. L. Chen, J. Am. Chem. Soc. 1977, 99, 3647.
- [18] P. Turner, M. J. Gunter, B. W. Skelton, A. H. White, Aust. J. Chem. 1998, 51, 835.
- [19] J. DuBois, C. S. Tomooka, J. Hong, E. M. Carreira, Acc. Chem. Res. 1997, 30, 364.
- [20] [Mn(Br₈tpfc)] **5**: A solution of bromine (5 mL, 0.2 g, 1.2 mmol) and **1** (10 mg, 12 µmol) in methanol was stirred overnight, after which the methanol and excess bromine were removed under vacuum. Recrystallization from ethanol/water afforded 14.8 mg (85 % yield) of **5**. MS⁻: e/z (%): 1479 (100) [M^-], 1399 (10) [M^- Br]; UV/Vis (CH₂Cl₂) λ_{max} [nm] 402 (4.73), 422 (4.70), 490 (4.38), 612 (4.24); ¹⁹F NMR (CDCl₃): $\delta = -138$ (two overlapping brs, 6F), -152.3 (brs, 1F), -153.2 (brs, 2F), -160.5 (brs, 2F), -161.4 (brs, 4F).